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Abstract

This paper combines adaptive network fuzzy inference system (ANFIS) and finite element

method (FEM) to study the die shape optimal design in sheet metal bending process. At first, the

explicit dynamic FEM is used to simulate the sheet metal bending process. After the bending process,

the springback is analyzed by using the implicit static FEM to establish the basic database for ANFIS.

Then, the die shape optimal design is performed by ANFIS using this database in the sheet metal

bending process. As a verification of this system, the L-type and V-type dies are designed for the

experiments to prove the reliability of FEM analysis and ANFIS optimal design by comparing the

punch load and stroke relationship, the deformation history, stress distribution, and the bending angle

of workpiece after springback between numerical and experimental results. It shows that a good

agreement is achieved from comparison between numerical and experimental results. From this

investigation, ANFIS has proved to be a useful scheme for die shape optimal design in the metal

forming category.
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1. Introduction

Sheet metal bending is one of the most widely used

industrial forming operations, especially for household

appliances, automobile, shipbuilding, aircraft, packag-

ing, and the furniture industry. Specific examples of

sheet metal bending products are pet food containers,

beverage cans, razor caps, housings, stiffeners, cars bo-

dies, and outer and inner panels. The elastic redistribu-

tion of sheet metal occurs due to the unloading when

sheet metal is removed from the die. Springback is a

common phenomenon in sheet metal bending process.

The amount of springback affects the precision and as-

sembly of the product due to the error between the objec-

tive and the final shape. Interplay of these factors causes

springback prediction to be especially complicated and

difficult to investigate. Springback is mainly affected by

thickness of sheet metal, material parameters, and the

punch and die profile radius [1,2]. The cracking and di-

mension accuracy in U-shaped part forming can be im-

proved by reasonable variable blankholder force [3].

Chan et al. [4] studied the springback angles of the

workpiece in V-bending by varying the punch angle,

punch radius and die-lip radius. A die design recommen-

dation for one material AL2024-T4 is conducted to re-

duce springback [5].

There are two common methods used to prevent

springback and satisfy the specification of the product,

minimizing springback or compensating for the profile

of the mold. Lin and Tai [6] established a predictive

model of the neural network to find the bend parameters

with minimum springback in L-shaped bend. For the

compensation of springback in die shape optimal design,

Gan and Wagoner [7] considered springback in propos-

Journal of Applied Science and Engineering, Vol. 15, No. 1, pp. 31�40 (2012) 31

*Corresponding author. E-mail: funghuei@mail.tku.edu.tw



ing a new die design method (displacement adjustment

method) to produce a desired final part shape. It usually

need a few iterations, and may oscillate in convergence

behavior. Furthermore, Sousa et al. [8] coupled a genetic

algorithm (FORTRAN codes) and the commercial soft-

ware ABAQUS for search the optimal geometry of tools.

It spent much time to find the best combination of design

variables.

To reduce effectively the time and cost in designing

the product, adaptive network fuzzy inference system

(ANFIS) [9], using hybrid-learning procedure to construct

a set of fuzzy if-then rules with appropriate membership

functions to generate the stipulated input-output pairs, has

served as another valuable approach to the metal forming

process. ANFIS has been applied to inverse prediction of

hole profile in the hole bore-expanding [10,11] and opti-

mization of blank design in stretch flange process [12].

But, ANFIS has not been applied to the die shape optimal

design in sheet metal bending process yet.

This study presents a prediction scheme that com-

bines the finite element method (FEM) and ANFIS to

determine the die shape optimal design in L-bending and

V-bending processes. The explicit dynamic FEM and

implicit static FEM are used to analyze the bending pro-

cess and springback respectively. The die shape optimal

design of the bending process can be inversely deter-

mined efficiently using ANFIS. To verify the accuracy of

ANFIS, a set of optimal V-bending die are designed to

perform the experiment. From comparison of the results

between simulation and experiment, ANFIS can accu-

rately calculate the exact optimal die shape in sheet

metal bending process. This scheme can be also easily

applied to predict the optimal die shape in other metal

forming processes.

2. Basic Theory

2.1 Explicit Dynamic Finite Element Method

In the framework of the explicit dynamic finite ele-

ment method, the virtual work governing equation that

involves internal force, body force, contact force, and

momentum can be expressed as follows [13]:

(1)

where ��x is the acceleration, � is the Cauchy stress, � is

the strain, � is the mass density, b is the body force den-

sity, and f denotes the surface traction force. After the

finite element discretion, Eq. (1) is described in a ma-

trix form as the following:

(2)

where M is the mass matrix, Ft

1, Ft

2 and Ft

3 are the stress

load, body force load, and surface force load at time t

respectively, and N is the shape function. The solution

for time t + �t can be obtained by solving the accelera-

tion ��u in Eq. (2). The central difference method is then

used to calculate velocity and displacement as follows:

(3)

(4)

(5)

where �tt+�t/2 = (�tt + �tt+�t)/2, and v and u are the nodal

velocity and displacement. The time increment �t in the

central difference method should be smaller than a cri-

tical time increment �tcri to guarantee the convergence

in the solution procedure; and the critical time incre-

ment �tcri for the shell element in the explicit dynamic

scheme is decided from the following equation:

(6)

where Ls is the characteristic length calculated from the

element area divided by the longest side in the element.

E and � are the Young’s modulus and Poisson’s ratio,

respectively. As each element has its critical time incre-

ment, the critical time increment in a deformation stage

is determined by the minimum value in the whole sys-

tem, that is,

(7)

where n denotes the element number. �ti is the critical

time increment for element i, and � is a safety para-

meter, which is usually set at 0.9 in the simulation. It is

apparent that the time increment in Eq. (6) is propor-

tional to the square root of the mass density. Hence, the

merit of the explicit dynamic scheme is that if the simu-

lation results still maintain the accuracy, increasing the

velocity factor or the mass density factor is allowable to

save the execution time in the simulation.
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2.2 Implicit Static Finite Element Method

In the implicit static finite element method, the ac-

celeration and velocity term are neglected, the principle

of virtual work leads to

(8)

where K is the stiffness matrix, u is the nodal displace-

ment, R is the load vector from the out-of-balance inter-

nal stresses, Fn� 1

ext is the nodal external force, and Fn

int is

the nodal internal force. In the implicit static finite ele-

ment method, the nodal displacement can be solved as

follows:

(9)

The stiffness matrix formed during implicit analysis

requires a large amount of memory, and computing the

inverse requires most of the solution time. In the static

analysis, no confirmation is performed to ensure that the

resulting springback produced balanced internal stresses.

Thus, the static approach yields inaccurate results and

should only be used to estimate springback.

2.3 Adaptive-Network-Based Fuzzy Inference System

2.3.1 Architecture of the ANFIS

The adaptive-network-based fuzzy inference system

(ANFIS) [9] can simulate and analyze the mapping rela-

tionship between the input and output data through hy-

brid learning to determine optimal distribution of mem-

bership function. This particular ANFIS is based mainly

on the fuzzy “if-then” rules from the Takagi and Su-

geno’s type [14], and involves a premise and consequent.

The equivalent ANFIS architecture of Takagi and Su-

geno’s type, as shown in Figure 1, comprises five layers

in this inference system. Each layer involves several

nodes, which are described by the node function. The

output signals from nodes in the previous layers will be

accepted as the input signals in the present layer. The

output serves as input signals for the next layer after

manipulation by the node function in the present layer.

Here, square nodes, called “adaptive nodes”, are adopted

to demonstrate that the parameter sets in these nodes are

adjustable. Whereas, circle nodes, named “fixed nodes”,

are adopted to demonstrate that the parameter sets are

fixed in the system. To explain the procedure of the

ANFIS simply two inputs, x and y, and one output, f, are

included in the fuzzy inference system. In the first order

of the Sugeno fuzzy inference model, the typical fuzzy

“if-then” rules can be expressed as:

Rule 1: if x is A1 and y is B1 then f = p1x + q1y + r1

Rule 2: if x is A2 and y is B2 then f = p2x + q2y + r2

The five layers in the ANFIS are fuzzy, production,

normalized, defuzzy, and total output layer, in that order.

The following concepts are the input and output relation-

ships of each layer.

Layer 1: Fuzzy

Every node in this layer is an adjustable node, marked

by a square node, with the node function as:

(10)

(11)

where x (or y) is the input of the node, and Ai (or Bi�2) is

the linguistic variable. The membership function usu-

ally adopts a bell-shape with maximum and minimum

equal to 1 and 0, respectively:

(12)

where {ai, bi, ci) represents the parameter set. It is sig-

nificant that if the values of these parameters set changes,

the bell-shape function will be changed accordingly.

Meanwhile, the membership functions are also different

in the linguistic label Ai. The parameters in this layer

are called “premise parameters”.

Layer 2: Production

Every node in this layer is a fixed node and marked
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by a circle node with the node function multiplying input

signals to serve as the output signal,

(13)

The output signal 	i meant the firing strength of a

rule.

Layer 3: Normalized

Every node in this layer is a fixed node and marked

by a circle node with the node function normalizing fir-

ing strength by calculating the ratio of this node firing

strength to the sum of the firing strength:

(14)

Layer 4: Defuzzy

Every node in this layer is an adjustable node and

marked by a square node with the node function as:

(15)

where 	i is the output of Layer 3. {pi, qi, ri} are the

parameter set, which is referred to as the consequent

parameters.

Layer 5: Total output

Every node in this node is a fixed node and marked

by a circle node with the node function computing the

overall output by:

(16)

Explicitly, this layer sums the node’s output in the

previous layer to be the output of the whole network.

2.3.2 Hybrid-Learning Algorithm

From the architecture of the ANFIS, if the para-

meters in the premise part are fixed, the output of the

whole network system would be the linear combination

of the consequent parameters.

3. Finite Element Analysis and Experiment

The planned framework of the predictive scheme for

die shape optimal design in the sheet metal bending pro-

cess is illustrated in Figure 2. To verify the finite element

analysis, this paper designs the tools of L-bending and

V-bending for the experiments. Figures 3 and 4 show the

dimensions of tools and blank in the L-bending and V-

bending processes.

3.1 Finite Element Analysis

The finite element analysis comprises three rigid bo-

dies, punch, die and blank holder, and a deformable

blank sheet. The element used in the simulation is

SHELL 163 that adopts four nodes to represent the sheet.

The blank has an original rectangular shape 80.0 mm 


35.0 mm in the L-bending process, and the finite element

model involves 200 elements and 231 nodes as shown in

Figure 5. Figure 6 shows the finite element mesh and

boundary condition of the blank in the V-bending pro-

cess, the blank is a square with diagonal of 68.0 mm. To

reduce the solution time, only right half of each tool and

blank is built due to the symmetrical condition. An auto-

mesh program is used to mesh the blank, and the mesh of

the blank involves 1800 elements and 1861 nodes. The

nodes on the Y-axis have a displacement constraint in the X

direction and rotation constraint in the Y and Z directions.

To eliminate rigid body motion (three translations

and three rotations), an adequate number of constraints
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ment.



must be defined during the springback analysis. The

three constraint points should be chosen well separated

from each other, and away from edges and flexible areas

in the part. Figure 7 is the location of required constraints

for the full model in the springback analysis. Point A is

the reference point, receiving constraints to all three

translational degrees of freedom. All displacements of

the point A are zero dx = dy = dz = 0. Point B is located

away from point A along the global X-direction. Con-

straints are applied at point B to eliminate global Y- and

Z-translations (dy = dz = 0). Point C is located away from

point A along the global Y-direction. Only the global

Z-translation is constrained at point C (dz = 0). Figure 8

shows the required constraints for the symmetry model

in the springback analysis. The constraints must be added

to two points on the symmetry plane (Y-Z plane). All dis-

placements of reference point A are constrained (dx = dy

= dz = 0), eliminating the three translational rigid body

motion of the part. In addition to the standard symmetry

constraints, selected translational degrees of freedom are

constrained at point B to eliminate the three rigid body

rotations of the part about point A.

Aluminum 6061 used in the experiments is supplied

by the China steel corporation. The materials are tested

according to JIS standard test method in the direction of

0�, 45�, 90� with respect to the rolling direction. The ma-

terial parameters of aluminum 6061 are as follows:

Initial thickness of blank: tb = 1.0 mm
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Figure 3. The dimensions of blank and die assembly in the
L-bending process.

Figure 4. The dimensions of blank and die assembly in the
V-bending process.

Figure 6. The finite element meshes and boundary conditions
of the blank in the V-bending process.

Figure 5. The finite element meshes of the blank in the L-
bending process.



Stress-strain constitutive equation: � = 395.01(0.006104

+ � p )0.0582 MPa

Yield stress: �y = 293.59 MPa

Young’s modulus: E = 73313.8 MPa

Lankford value: R0 = 0.63, R45 = 0.48, R90 = 0.84

Poisson’s ratio: � = 0.3

The Coulomb friction law is used to determine the

friction coefficient between the blank and tools. The fric-

tion coefficient is set at 0.1.

3.2 Experimental Work

The experimental equipment includes a 50-ton hy-

draulic press forming machine and data acquisition de-

vice. The relationship between punch load and stroke

during the forming process can be shown synchronously

in the computer monitor through data acquisition equip-

ment. The procedure of the experiment is summarized as

follows:

(1) Assemble the tools on the hydraulic press forming

machine;

(2) Adjust the center position between the punch and

die;

(3) Spray uniformly a thin film of zinc stearate

[Zn(C18H35O2)] onto the contact surface between the

blank and tools;

(4) Set the punch velocity and stroke for the punch to

press the blank;

(5) Record the punch load-stroke relationship during the

bending process;

(6) Measure the experimental bending angle of the

workpiece to compare with the FEM results by using

optical profile projector and digital readout.

3.3 Comparison of Numerical Analysis and

Experimental Results

The present study designs the L-type and V-type dies

for the expeiments of the bending process. The punch

load, deformation history, stress distribution and numeri-

cal bending angle of the workpiece after springback are

discussed and compared with the experimental results.

The reliability of the analytical program can be proved

by the comparison between simulations and experimen-

tal results.

Figure 9 shows the comparison of punch load be-

tween the simulation and experiment in the L-bending

process. When the punch presses the blank downward, it

causes the punch load to increase as the stroke increases

until a maximal value is achieved. After the maximum
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Figure 7. The location of constraint nodes for the full model
in the springback analysis.

Figure 8. The location of constraint nodes for the symmetric
model in the springback analysis.

Figure 9. The comparison of punch load between simulation
and experiment in L-bending process.



punch load, the punch load decreases with the increase

of the stroke. When the workpiece has already bent com-

pletely, it only receives the friction between the work-

piece and tools. Then, the punch load reduces to 700N

and maintains steadily. Figure 10 is the deformation his-

tory and stress distribution of the workpiece in the L-

bending process. The blank is bent gradually with the in-

crease of the stroke from Figure 10 (a)�(c). The numeri-

cal bending angle of the workpiece after springback

equals 99.79� in Figure 10(d). The experimental bending

angle of the workpiece is 100.25� measured by two lines

(Line 1 and Line 2) composed of four points (Points A,

B, C, and D) in Figure 11, and the angle error between

experiment and simulation is only 0.46%. As shown in

Figure 12, the deformed mesh is merged into the formed

shape of the workpiece to obtain a clear comparison be-

tween experiment and simulation. The simulation has

good coincidence with the experimental results.

A comparison between the experimental results and

simulation for punch load versus stroke in the V-bending

process is shown in Figure 13. When the V-bending pro-

cess starts, the punch load increases gradually due to the

tip of the punch pressing the blank. The outer and inner

blank are each stretched and compressed during the

bending process. The punch load then maintains stably

while the stroke increases. When the blank is pressed

tightly by the punch and die, the punch load increases

rapidly to the maximal value. It can be observed that the

simulated punch load shows good coincidence with the

experimental result in Figure 13. In Figure 14, the exper-

imental bending angle of the workpiece equals 93.73�

measured by two lines (Line 1 and Line 2) composed of
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Figure 10. The deformation history and stress distribution of
workpiece in the L-bending process (a, b, c, d).

Figure 11. The workpiece for the original die shape in the
L-bending process.

Figure 12. Photograph of deformed mesh and formed shape of
the workpiece in the L-bending process.

Figure 13. The comparison of punch load between simulation
and experiment in V-bending process.



four points (Points A, B, C, and D) when the angle of the

original die is 90.00�. The numerical and experimental

bending angles of the workpieces are 93.83� and 93.73�.

The angle error between experiment and simulation is

only 0.11%. In Figure 15, the deformed mesh of FEM is

merged into the formed shape of the workpiece. The de-

formed mesh gives a satisfactory agreement with the ex-

perimental formed shape.

4. Die Shape Optimal Design in the

L-Bending and V-Bending

4.1 Die Shape Optimal Design

This paper adopts five bell-shape membership func-

tions and 200 hybrid-learning cycles to formulate the

knowledge rule database in ANFIS training. The angle

of die and bending angle of the workpiece are adopted as

the input data of the knowledge rule database. The range

of die angle are 90�~95� (L-bending) and 80�~90� (V-

bending) respectively. For ascertaining the validity of

the ANFIS, the above experimental bending angles of

the workpieces of 100.25� and 93.73� in L-bending and

V-bending are set as the objective bending angles. Then,

the die angles of 89.93� and 89.86� can be accurately ob-

tained by the inverse prediction scheme of ANFIS. The

designed die angle errors in L-bending and V-bending

with above original experimental die angles are 0.077%

and 0.155% respectively. ANFIS has proved to be a use-

ful scheme for die shape optimal design in sheet metal

bending process.

Next, another die shape optimal designs in the L-

bending and V-bending are carried out. When the objec-

tive bending angles of workpieces of 105.00� and 90.00°

in L-bending and V-bending are set, the exact optimal

die shape with the die angles of 93.75� and 85.14� for the

L-bending and V-bending are predicted after building

the ANFIS. The numerical bending angles of the respec-

tive workpiece are equal to 104.97� and 85.14� when the

angles of optimal die shape are 93.75� and 85.14� in the

L-bending and V-bending processes.

Figure 16 shows the deformation history and stress

distribution of the workpiece with various strokes for the

optimal die shape in the L-bending process. Figure 16(a)

is the initial blank. When the bending process starts, the

punch makes contact and presses the blank. The blank is

bent at the die radius, as shown in Figure 16(b). The

maximum stress is occured at the bending position in

Figure 16(c). After springback, the numerical bending

angle of workpiece is approximately 104.97� as shown

in Figure 16(d).
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Figure 14. The workpiece for the original die shape in the V-
bending process.

Figure 15. Photograph of deformed mesh and formed shape of
the workpiece in the V-bending process.

Figure 16. The deformation history and stress distribution of op-
timal workpiece in the L-bending process (a, b, c, d).



4.2 Comparison of Numerical Analysis and

Experiment Results for the Optimal Die Shape

in the V-Bending Process

To prove the reliability and accuracy of the ANFIS,

the optimal die shape is designed for the experiment. The

comparison between the experimental results and simu-

lation for punch load versus punch stroke for the optimal

die shape in the V-bending process is shown in Figure

17. The punch load increases slowly with the increase of

stroke until the bent blank becomes tangent to the die

face. The pressing process at the final bending stage

causes the punch load to increase at an even steeper rate.

To understand the bending and springback pro-

cesses, Figure 18 shows the deformation history and

stress distribution of the workpiece with various punch

strokes for the optimal die shape in the V-bending pro-

cess. The numerical bending angle of the workpiece is

89.97�. The experimental bending angle of the work-

piece for the optimal die shape is 89.93� in Figure 19. In

Table 1, the numerical and experimental bending angles

of workpieces are very close to the objective bending

angle of 90�.

5. Conclusion

This paper has used the explicit dynamic and im-

plicit static finite element methods to analyze the spring-

back in the L-bending and V-bending processes, and

used ANFIS to achieve the die shape optimal design in

sheet metal bending process. By employing the hybrid-

learning algorithm, ANFIS can obtain the optimal dis-

tributed membership functions to describe the mapping

relation in the input process parameters and output pro-

cess parameters. When the objective bending angle of

workpiece is 105.00� in the L-bending process, the

ANFIS predicts the angle of the L-type die to be 93.75�.

The numerical bending angle of the workpiece is 104.97�.

When the objective bending angle of workpiece is 90.00�

in the V-bending process, the ANFIS predicts the angle

of V-type die to be 85.14�. The numerical and experi-

mental bending angles of the workpieces are 89.97� and

89.93� respectively. The deviation of the bending angle
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Figure 17. Comparison of punch load versus stroke for the op-
timal die shape in the V-bending process.

Figure 18. The deformation history and stress distribution of
optimal workpiece in the V-bending process (a, b,
c, d).



is 0.044%. From the investigations, it proves that ANFIS

will supply a useful die shape optimal design scheme in

the metal forming industry.
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Figure 19. The workpiece for the optimal die shape in the V-
bending process.

Table 1. The bending angle of workpiece for the original

and optimal die shape in the V-bending process

Bending angle of

workpieceObjective bending angle

90.00�
Simulation Experiment

Angle of original die 90.00� 93.83� 93.73�

Angle of optimal die 85.14� 89.97� 89.93�


